If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4-20x^2=0
a = -20; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-20)·4
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-20}=\frac{0-8\sqrt{5}}{-40} =-\frac{8\sqrt{5}}{-40} =-\frac{\sqrt{5}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-20}=\frac{0+8\sqrt{5}}{-40} =\frac{8\sqrt{5}}{-40} =\frac{\sqrt{5}}{-5} $
| 0.05x+250=0.25x | | 3x+3x=3x+3=3+5x | | 49/14+4m/14=67/14 | | 3.9x+50.2=24.6-8.9x | | n-10+3=7 | | 200+75=800x | | -23=3x-5-x | | 3x+3x+3x=3=3+5x | | -5-5(2n+1)=-80 | | 6x-4x+1=2(5x+4) | | 2(3x+5)=-6 | | -n+6=-10+8+7n | | 487+5x+8x+709=91 | | s(6)=9(6)2+4(6)+90 | | -x+3(2x-5)=-35 | | 8+4m=5m-2 | | -7p-6=-9p+10 | | Y=3.5-2x+3 | | 5y+7+6y=-9+3y | | 4x+1²+94x+1=-18 | | 6x-18=-3x+45 | | 10-4(p+7)=2(1-7) | | (4x+1)²+9(4x+1)=-18 | | 6r-r-+7=4r-3 | | 4+3x=7x-8+3x-12 | | 6(×-3)=-3x+4.5 | | (4x+1)²+9(4x+1=-18 | | 3y=4y-8 | | -4h-3=-6-5h | | .25(7x+9)=2x | | 15=n3+12 | | 7j-2=10+9j |